
Intermediate Algebra, 2/e
K. Elayn MartinGay, University of New Orleans, Lakefront Published December, 1996 by Prentice Hall Engineering/Science/Mathematics
 
See other books about:

Mental Math boxes ask students to employ analytical skills and solve problems intuitively. They can be incorporated as inclass oral exercises or as preludes to exercise sets. Definitions are clearly explained, both visually (definitions are summarized and highlighted by color) and by worked example. Ideal for visual learners, and/or for those who learn best by example. Conceptual Exercises, identified by an icon, ask students to verbalize solutions, increasing students' “writing in mathematics” skills.
NEW—Unique chapter openers feature vignettes and related photographs demonstrating reallife applications of mathematics. Vignettes are summarized at ends of chapters with boxes stressing problem solving and critical thinking skills.
NEW—A sixstep problemsolving framework is woven consistently throughout. Students are asked to:
NEW—Basic concepts of functions are introduced early and intuitively. Students are gently eased into the concept of a function in Chapter 3, the concept of function is revisited as appropriate throughout the text. NEW—Exercise sets have been carefully reviewed and revised to include more real data. The sets are graded in level of difficulty, and feature more conceptual and current data from environmental science, allied health, astronomy, business and other disciplines.
(NOTE: Each chapter ends with highlights, review, test and cumulative review.)
Algebraic Expressions and Sets of Numbers. Properties of Real Numbers. Operations on Real Numbers. Order of Operations and Algebraic Expressions. 2. Equations, Inequalities and Problem Solving. Linear Equations in One Variable. An Introduction to Problem Solving. Formulas and Problem Solving. Linear Inequalities and Problem Solving. Compound Inequalities. Absolute Value Equations. Absolute Value Inequalities. 3. Graphs and Functions. Graphing Equations. Introduction to Functions. Graphing Linear Functions. The Slope of a Line. Equations of Lines. Graphing Linear Inequalities. 4. Systems of Equations. Solving Systems of Linear Equations in Two Variables. Solving Systems of Linear Equations in Three Variables. Systems of Linear Equations and Problem Solving. Solving Systems of Equations by Matrices. Solving Systems of Equations by Determinants. 5. Exponents, Polynomials, and Polynomial Functions. Exponents and Scientific Notation. More Work with Exponents and Scientific Notation. Polynomials and Polynomial Functions. Multiplying Polynomials. The Greatest Common Factor and Factoring by Grouping. Factoring Trinomials. Factoring by Special Products and Factoring Strategies. Solving Equations by Factoring and Problem Solving. An Introduction to Graphing Polynomial Functions. 6. Rational Expressions. Rational Functions and Simplifying Rational Expressions. Multiplying and Dividing Rational Expressions. Adding and Subtracting Rational Expressions. Simplifying Complex Fractions. Dividing Polynomials. Synthetic Division and the Remainder Theorem. Solving Equations Containing Rational Expressions. Rational Equations and Problem Solving. Variation and Problem Solving. 7. Rational Exponents, Radicals, and Complex Numbers. Rational and Radical Functions. Rational Exponents. Simplifying Radicals Expressions. Adding, Subtracting, and Multiplying Radicals. Rationalizing Numerators and Denominators of Radical Expressions. Radical Equations and Problem Solving. Complex Numbers. 8. Quadratic Equations and Functions. Solving Quadratic Equations by Completing the Square. Solving Quadratic Equations by the Quadratic Formula. Solving Equations by Using Quadratic Methods. Nonlinear Inequalities in One Variable. Quadratic Functions and Their Graphs. Further Graphing of Quadratic Functions. 9. Conic Sections. The Parabola and the Circle. The Ellipse and the Hyperbola. Solving Nonlinear Systems of Equations. Nonlinear Inequalities and Systems of Inequalities. 10. Exponential and Logarithmic Functions. Exponential Functions. Composite and Inverse Functions. Logarithmic Functions. Properties of Logarithms. Common Logarithms, Natural Logarithms, and Change of Base. Exponential and Logarithmic Equations and Applications. 11. Sequences, Series and the Binomial Theorem. Sequences. Arithmetic and Geometric Sequences. Series. Partial Sums of Arithmetic and Geometric Sequences. The Binomial Theorem. Appendix. A. Operations on Decimals. B. Reviews of Angles, Lines and Special Triangles. C. Review of Geometric Figures. D. Table of Squares and Square Roots. E. Intro Graphing and Calculators. F. Answers to Selected Exercises.
