## Exponential Regression

The exponential regression option finds the equation of an exponential equation of
the form y = ab^{x} or y = ae^{bx}that best fits a set of data.
First, press selecting option AEDIT to
enter the data .

The data shown here is the points {(2,11.4) (3,17) (5,27.3) (7,36.1) (11,47.7) (13,49.9)}

Press
DREG to view the regression options.

For exponential regression, select option 09Rg_ab^{x}
using
followed by eight
or select option 10Rg_ae^{bx}
using
followed by nine

Press
and select one of the exponential regression options in the calculation screen.
Now press
followed by
.

Therefore, the best-fit exponential equation for this data is approximately

y = 11.78(1.133)^{x}
which is equivalent to

y = 11.78(e^{0.125x})

The regression equation can be automatically stored in the equation editor
by entering the name of the equation, such as y1, after (L1,L2 as follows:
choose option A
and select y1 followed by
.

**Note:** The Sharp calculates both the correlation coefficient r and the
coefficient of determination r^{2}.