Complementary MOS (CMOS) Inverter

- Concept: transistor switches connect output either to V_{DD} or to ground

![Diagram of CMOS inverter](attachment:image.png)

- Practical realization: connect input to gate of p-channel device.

 $V_{IN} = V_{DD} \rightarrow V_{SG2} = V_{DD} - V_{IN} = 0 < - V_{Tp} \rightarrow$ cutoff

 $V_{IN} = 0 \rightarrow V_{SG2} = V_{DD} - V_{IN} = V_{DD} >> - V_{Tp} \rightarrow$ on (triode region)

- Graphical analysis: need to find family of load lines since input is connected to gate of M_2
p-Channel MOSFET Characteristics

- p-channel MOS load device:

\[V_{SGp} = V_{DD} - V_{IN} \]

As \(V_{IN} \) increases, the source-gate voltage \(V_{SGp} \) decreases.

Note that the bulk connection is tied to the source (\(V_{DD} \)), which results in a constant threshold voltage.
Switchable Current-Source Pull-Up

* The drain characteristics are \(I_{Dp} = I_D (V_{SG}, V_{SD}) \), which can be expressed as the “switchable” pull-up’s current-voltage characteristic,

\[
i_{SUP} = i_{SUP}(V_{IN}, v_{SUP})
\]

since \(i_{SUP} = -I_{Dp} \) and \(V_{SG} = V_{DD} - V_{IN} \) and \(v_{SUP} = V_{SD} \).

\[-I_{Dp} = i_{SUP}\]

\[-V_{Tp}\]
CMOS Transfer Characteristic

- plotting the p-channel pull-up on the n-channel “driver’s” drain characteristics allows us to find the input-output voltage pairs that satisfy the constraint that

\[I_{Dn} = - I_{Dp} \]

\[V_{IN} \]

\[V_{OUT} \]

\[V_{DD} \]

- \[I_{Dn} = - I_{Dp} \]

- \[-I_{Dp} = I_{Dn} \]
For CMOS inverters, the voltage transfer curve of the inverter is ideal enough that we can approximate it with a construction that is suitable for quick hand calculation.

We first observe that:

\[V_{OH} = V_{MAX} = V_{DD} \quad \text{and} \quad V_{OL} \approx V_{MIN} = 0 \, \text{V} \]

The edges of the transition region are then found as the intersections of the tangent to the voltage transfer curve at \(V_{IN} = V_M \) (a line of slope \(A_v \)).

In order to construct the VTC for a CMOS inverter (and to find estimates of the noise margins), we need to first:

(i) find the voltage \(V_M \)

(ii) find the small-signal voltage gain \(A_v \) at \(V_{IN} = V_M \)
Step 1. Finding V_M

- **Goal:** find $V_M = \text{input voltage for the output } = V_M$

 both transistors are saturated at $V_{IN} = V_M$ since

 $$V_{DSn} = V_M - 0 > V_M - V_Tn$$

 $$V_{SDp} = V_{DD} - V_M = (V_{DD} - V_M) + V_{Tp}$$

- Equate drain currents, omitting the channel length modulation terms $(1 + \lambda_n V_{DSn})$ and $(1 + \lambda_p V_{SDp})$ since they tend to cancel out (if $\lambda_n = \lambda_p$, they exactly cancel out)

 $$I_{Dn} = \mu_n C_{ox} \left(\frac{W}{2L} \right)_n (V_M - V_Tn)^2$$

 $$-I_{Dp} = \mu_p C_{ox} \left(\frac{W}{2L} \right)_p (V_{DD} - V_M + V_{Tp})^2$$

- Letting $k_n = \mu_n C_{ox} (W/L)_n$ and $k_p = \mu_p C_{ox} (W/L)_p$

 $$\frac{1}{2} k_n (V_M - V_Tn)^2 = \frac{1}{2} k_p (V_{DD} - V_M + V_{Tp})^2$$
Finding V_M (cont.)

Result:

$$V_M = \frac{V_{Tn} + \sqrt{k_p/k_n} (V_{DD} + V_{Tp})}{1 + \sqrt{k_p/k_n}}$$

We can set $V_M = V_{DD}/2$ and achieve a symmetrical transfer curve.

Example: suppose $V_{Tn} = -V_{Tp} = 1$ V and $V_{DD} = 5$ V

$$V_M = \frac{1 + 4 \sqrt{k_p/k_n}}{1 + \sqrt{k_p/k_n}} = 2.5 \text{ V} \rightarrow k_p = k_n$$

which makes sense since the transistors must have identical characteristics for the transfer curve to be symmetrical.

The mobility of holes in p-channels is about half that of electrons in n-channels, $\mu_p = \mu_n / 2$, which implies that we must adjust the width-length ratios to compensate:

$$k_n = k_p \rightarrow (W/L)_p = 2(W/L)_n$$
Step 2. Finding A_v

We note that $v_{sg2} = -v_{in}$ and can simplify the small-signal circuit.
Approximate Transfer Curve

- The small-signal gain (which is the slope of the transfer curve when the input is equal to the mid-point voltage) is:

\[\frac{v_{out}}{v_{in}} = -(g_{mn} + g_{mp})(r_{on}||r_{op}) = A_v \]

CMOS inverters have a channel length that is as short as possible (to minimize the area ... and maximum the density) ... the output resistances are relatively small and a typical value is \(\frac{v_{out}}{v_{in}} = -5 \) to -10.

* The input-low and input-high voltages are:

\[V_{IL} = V_M - \left(\frac{V_{DD}}{2|A_v|} \right) \]
\[V_{IH} = V_M + \left(\frac{V_{DD}}{2|A_v|} \right) \]
Noise Margins

- For $k_N = k_P$ the mid-point voltage is $V_M = 2.5$ V. For a slope $A_v = -5$, the input-low voltage and input-high voltages are:

$$V_{IL} = 2.5 \text{ V} - \left(\frac{1}{5}\right) (2.5 \text{ V}) = 2 \text{ V}$$

$$V_{IH} = 2.5 \text{ V} + \left(\frac{1}{5}\right) (2.5 \text{ V}) = 3 \text{ V}$$

The low and high noise margins are therefore:

$$N_{ML} = V_{IL} - V_{OL} = 2 - 0 = 2 \text{ V}$$

$$N_{MH} = V_{OH} - V_{IH} = 5 - 3 = 2 \text{ V}$$

The transition region (or “gray area”) is the interval

$$V_{IL} < V_{IN} < V_{IH} \quad \text{or} \quad 2 \text{ V} < V_{IN} < 3 \text{ V}$$

- Finding the actual transfer function requires solving the drain current equations when the p-channel and n-channel are in the appropriate operating regions ... and finding the transition voltages for the regions.

SPICE is good at this job!
CMOS Inverter: Propagation Delay

- The propagation delays t_{PHL} and t_{PLH} are obviously of major importance for digital circuit design ...

Example:

clock frequency = 250 MHz \rightarrow clock period = 4 ns

complex systems (e.g., microprocessor) have around 20-50 propagation delays per clock period, so we need to have

t_{PLH} and $t_{PHL} < 100 \text{ ps} = 10^{-10} \text{ s}$

- Hand calculation of propagation delays: use approximation that input changes instantaneously
Estimating the Load Capacitance

- The load capacitance C_L consists of

 C_G, the input capacitances of the inverters 2 and 3, and

 C_P, the parasitic capacitance to the substrate from the drain regions of inverter 1 and the interconnections between the output of inverter 1 and the inputs of inverters 2 and 3.

\[
C_G = C_{ox} \left[(W \cdot L)_{p2} + (W \cdot L)_{n2} + (W \cdot L)_{p3} + (W \cdot L)_{n3} \right]
\]
Parasitic Capacitance from Drain Depletion Regions

- The drain n and p regions have depletion regions whose stored charge changes during the transient.

Take the worst case and use the zero-bias depletion capacitance (the maximum value) as a linear charge-storage element during the transient.
Calculation of Parasitic Depletion Capacitance

- “Bottom” of depletion regions of the load inverters’ drain diffusions contribute a depletion capacitance

\[C_{BOTT} = C_{Jn}(W_nL_{diffn}) + C_{Jp}(W_pL_{diffp}) \]

with \(C_{Jn} \) and \(C_{Jp} \) being the zero-bias junction capacitances (fF/\(\mu \)m\(^2\)) for the n-channel MOSFET drain-bulk junction and the p-channel MOSFET drain-bulk junction, respectively.

- “Sidewall” of depletion regions of the load inverters’ drain diffusions make an additional contribution:

\[C_{SW} = (W_n + 2L_{diffn})C_{JSWn} + (W_p + 2L_{diffp})C_{JSWp} \]

with \(C_{JSWn} \) and \(C_{JSWp} \) being the zero-bias sidewall capacitances (fF/\(\mu \)m) for the n-channel MOSFET drain-bulk junction and the p-channel MOSFET drain-bulk junction, respectively.

- The total depletion capacitance \(C_{DB} = C_{BOTT} + C_{SW} \)

- Typical numbers: \(C_{Jn} \) and \(C_{Jp} \) are about 0.2 fF/\(\mu \)m\(^2\) and \(C_{JSWn} \) and \(C_{JSWp} \) are about 0.5 fF/\(\mu \)m.
Parasitic Capacitance from Interconnections

- “Wires” consist of metal lines connecting the output of the inverter to the input of the next stage. In cross section,

- The p^+ layer (i.e., heavily doped with acceptors) under the thick thermal oxide (500 nm = 0.5 µm) and deposited oxide (600 nm = 0.6 µm) depletes only slightly when positive voltages appear on the metal line, so the capacitance is approximately the oxide capacitance:

$$C_{WIRE} = C_{thickox}(W_m \cdot L_m)$$

where the oxide thickness = 500 nm + 600 nm = 1.1 µm.

* For large digital systems, the parasitic interconnect capacitance can dominate the load capacitance --

$$C_L = C_G + C_P = C_G + (C_{DB} + C_{WIRE})$$